Regionally selective blockade of GABAergic inhibition by zinc in the thalamocortical system: functional significance.
نویسندگان
چکیده
The thalamocortical (TC) system is a tightly coupled synaptic circuit in which GABAergic inhibition originating from the nucleus reticularis thalami (NRT) serves to synchronize oscillatory TC rhythmic behavior. Zinc is colocalized within nerve terminals throughout the TC system with dense staining for zinc observed in NRT, neocortex, and thalamus. Whole cell voltage-clamp recordings of GABA-evoked responses were conducted in neurons isolated from ventrobasal thalamus, NRT, and somatosensory cortex to investigate modulation of the GABA-mediated chloride conductance by zinc. Zinc blocked GABA responses in a regionally specific, noncompetitive manner within the TC system. The regional levels of GABA blockade efficacy by zinc were: thalamus > NRT > cortex. The relationship between clonazepam and zinc sensitivity of GABA(A)-mediated responses was examined to investigate possible presence or absence of specific GABA(A) receptor (GABAR) subunits. These properties of GABARs have been hypothesized previously to be dependent on presence or absence of the gamma2 subunit and seem to display an inverse relationship. In cross-correlation plots, thalamic and NRT neurons did not show a statistically significant relationship between clonazepam and zinc sensitivity; however, a statistically significant correlation was observed in cortical neurons. Spontaneous epileptic TC oscillations can be induced in vitro by perfusion of TC slices with an extracellular medium containing no added Mg(2+). Multiple varieties of oscillations are generated, including simple TC burst complexes (sTBCs), which resemble spike-wave discharge activity. A second variant was termed a complex TC burst complex (cTBC), which resembled generalized tonic clonic seizure activity. sTBCs were exacerbated by zinc, whereas cTBCs were blocked completely by zinc. This supported the concept that zinc release may modulate TC rhythms in vivo. Zinc interacts with a variety of ionic conductances, including GABAR currents, N-methyl-D-aspartate (NMDA) receptor currents, and transient potassium (A) currents. D-2-amino-5-phosphonovaleric acid and 4-aminopyridine blocked both s- and cTBCs in TC slices. Therefore NMDA and A current-blocking effects of zinc are insufficient to explain differential zinc sensitivity of these rhythms. This supports a significant role of zinc-induced GABAR modulation in differential TC rhythm effects. Zinc is localized in high levels within the TC system and appears to be released during TC activity. Furthermore application of exogenous zinc modulates TC rhythms and differentially blocks GABARs within the TC system. These data are consistent with the hypothesis that endogenously released zinc may have important neuromodulatory actions impacting generation of TC rhythms, mediated at least in part by effects on GABARs.
منابع مشابه
Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons.
Alterations in GABAergic function associated with the development of temporal lobe epilepsy (TLE) were examined with the use of patch-clamp recording techniques in dentate granule (DG) and CA1 neurons acutely isolated from control and spontaneously epileptic rats in which TLE was elicited by pilocarpine injection 3-17 wk before use. The maximal efficacy of gamma-aminobutyric acid (GABA) in acti...
متن کاملPropofol-block of SK channels in reticular thalamic neurons enhances GABAergic inhibition in relay neurons.
The GABAergic reticular thalamic nucleus (RTN) is a major source of inhibition for thalamocortical neurons in the ventrobasal complex (VB). Thalamic circuits are thought to be an important anatomic target for general anesthetics. We investigated presynaptic actions of the intravenous anesthetic propofol in RTN neurons, using RTN-retained and RTN-removed brain slices. In RTN-retained slices, foc...
متن کاملPOm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex.
Higher-order thalamic nuclei, such as the posterior medial nucleus (POm) in the somatosensory system or the pulvinar in the visual system, densely innervate the cortex and can influence perception and plasticity. To systematically evaluate how higher-order thalamic nuclei can drive cortical circuits, we investigated cell-type selective responses to POm stimulation in mouse primary somatosensory...
متن کاملSpecific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism
Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...
متن کاملDopamine and Serotonin-Induced Modulation of GABAergic and Glutamatergic Transmission in the Striatum and Basal Forebrain
Catecholamine receptor-mediated modulation of glutamatergic or GABAergic transmission in the striatum as well as basal forebrain (BF) has been intensively studied during these two decades. In the striatum, activation of dopamine (DA) D2 receptors in GABAergic terminals inhibits GABA release onto cholinergic interneurons by selective blockade of N-type calcium channels. In the BF, glutamatergic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 83 3 شماره
صفحات -
تاریخ انتشار 2000